MEMORANDUM

TO: The Files

FROM: Jerry McCann

DATE: June 6, 2007

RE: Methods for estimating a Population Index for juvenile salmon from detection probability at Lower Granite Dam

Overview

The route of passage configuration has changed significantly at Lower Granite Dam since the installation and use of the Removable Spill Weir (RSW). This change in operations made it difficult to use the traditional passage index calculation within season for management application. The FPC is exploring the use of another metric called the “population index” (PI) at this project.

Using PIT-tag detections at Little Goose Dam, it is possible to estimate daily detection probability (CE) at Lower Granite Dam. Then, using the daily estimates of detection probability a regression relationship was developed between CE and flow, spill and temperature, and then this regression was used to predict daily CE. Once daily detection efficiencies were predicted, a daily PI was calculated by dividing the daily collection (from SMP data) by the predicted CE for that date.

FPC estimated daily detection probabilities for hatchery yearling Chinook and hatchery steelhead, for four years from 2003 to 2006 at Lower Granite Dam. Then predictive models were developed for estimating CE at the dam for each species. The regression model developed performed well when used to predict past years (2003-2006). However, when the regression model was applied to 2007 data there appeared to be some differences, especially for steelhead. The model overestimates detection probability for steelhead at the low flows experienced in 2007. Consequently, the predicted population index is low. The 2007 migration conditions are different from what existed in the years used to build the model. Flows in 2007 are relatively
low, with regular spill occurring during the peak of migration. Due to this unique operation, the predicted values are outside the range of data from which the model was developed, so caution should be used in interpreting the results. The model will be repopulated with 2007 data after the season is completed, which should improve predictive capabilities under conditions similar to this year.

Estimating Daily Detection probability at Lower Granite Dam

Sandford and Smith 2002, and others have employed a method of using downstream PIT-tag detections to estimate proportions of daily detections at upstream projects. The method uses the travel time distribution data for fish detected at both sites to reconstruct their prior passage timing at the upstream dam. Applying the same passage distribution to the fish only detected at the downstream dam, allows their passage at the upstream site to be reconstructed as well, assuming the fish undetected at the upstream dam, have the same travel time distribution as the fish detected at both sites.

For each date at Little Goose Dam, the downstream site, there are a number of fish that were previously detected at Lower Granite dam. The travel time for each fish can be calculated, so that for a given day at Little Goose, the number of fish detected, \(n \), the average travel time \(\bar{x} \), and the population variance \(\sigma^2 \) can be estimated. From these statistics, using the method of moments, parameters, gamma and lambda can be calculated, for estimating gamma distributions to describe the distribution of travel times (LGR to LGS) observed at Little Goose Dam for the \(i \)th day (Lee 1980). Using the gamma distribution probability density function for a given date at Little Goose, the observed number of detections can then be distributed back through time at Lower Granite Dam, by solving \(P(X_{11})_i \) for days \(i \) to \(i \) minus 20 days. Since there are daily distributions for days \(1 \) to \(n \), where \(n \) is the last date for which adequate detections available, then the estimated number of fish passing detected \(X_{11} \) and undetected \(X_{01} \) at Lower Granite Dam on the \(j \)th date at Lower Granite is the trace sum \(\hat{N}_{jX_{11}} = \sum_{i=1}^{n} \sum_{j=(i-n)}^{i} P(X_{11})_j \) for fish detected at both sites, and similarly, \(\hat{N}_{jX_{01}} = \sum_{i=1}^{n} \sum_{j=(i-n)}^{i} P(X_{01})_j \) is the estimated number of undetected fish passing Lower Granite Dam on the same date.

Once the number detected and undetected is estimated for each date, an uncorrected estimate of detection probability can be calculated \(\hat{N}_{X_{11}} / (\hat{N}_{X_{01}} + \hat{N}_{X_{11}}) \). However, this number must be corrected by the proportion of PIT-tagged fish that were removed on the \(j \)th date at Lower Granite Dam, \(R_j \). These are fish that are either transported or removed for research. The final estimated detection probability for each date is calculated:

\[
\hat{p}_j = \frac{\hat{N}_{X_{11}}}{(\hat{N}_{X_{01}} + (1 - R_j) \cdot \hat{N}_{X_{11}})}
\]
Derivation of Data Predictive Model for CE

Fish Passage Center developed estimates of daily detection probability for yearling Chinook and steelhead for the years 2003 to 2006. For each date at Lower Granite Dam, we paired the estimated detection probability with Flow, Spill and Temperature data.

Detection probability was transformed to a logistic function, and regressed against predictor variables. Four multiple regression models, using combinations of the predictor variables and interaction terms were calculated. The predicted \hat{p} were compared to those \hat{p}_j's estimated for each year. Of the candidate models

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = \beta_0 + \beta_1 \text{AvgQ} + \beta_2 \text{AvgSpilPct} + \beta_3 \text{AvgSpillQ} + \varepsilon$$

was chosen (preliminarily) as the best predictor of the daily \hat{p}_j's for those years for both yearling Chinook and steelhead data sets. All models had similar predictive capability, but the use of flow, spill and percent spill was deemed most comparable to the historic passage index, which used flow and spill to calculate the index. And, the flow data is readily available to anyone wishing to calculate the index.

Confidence Intervals

Once the model was chosen, the variance for the predicted daily detection probabilities, $V(\hat{p})$ were calculated based on the variance covariance matrix from the regression (Draper and Smith 1981) as follows;

$$V(\hat{p}) = \sigma^2 [X_0'(X'X)^{-1}X'0]$$

Confidence intervals were then calculated as

$$\hat{p} \pm 1.96 \cdot \sqrt{V(\hat{p})}$$

Population Index

The daily population index PI_j was calculated by dividing the daily collection by the estimated collection efficiency (C_j); $PI_j = C_j / \hat{p}_j$.

Confidence intervals around the estimated population index were the daily collection divided by the upper and lower daily index limits. For cumulative plots, the daily upper and lower limits were summed to provide the upper and lower bounds for the cumulative estimate.
Literature Cited

